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One of the first issues that emerges when a prokaryotic organism of interest is encountered is the question of what it is—that is,
which species it is. The 16S rRNA gene formed the basis of the first method for sequence-based taxonomy and has had a tremen-
dous impact on the field of microbiology. Nevertheless, the method has been found to have a number of shortcomings. In the
current study, we trained and benchmarked five methods for whole-genome sequence-based prokaryotic species identification
on a common data set of complete genomes: (i) SpeciesFinder, which is based on the complete 16S rRNA gene; (ii) Reads2Type
that searches for species-specific 50-mers in either the 16S rRNA gene or the gyrB gene (for the Enterobacteraceae family); (iii)
the ribosomal multilocus sequence typing (rMLST) method that samples up to 53 ribosomal genes; (iv) TaxonomyFinder, which
is based on species-specific functional protein domain profiles; and finally (v) KmerFinder, which examines the number of cooc-
curring k-mers (substrings of k nucleotides in DNA sequence data). The performances of the methods were subsequently evalu-
ated on three data sets of short sequence reads or draft genomes from public databases. In total, the evaluation sets constituted
sequence data from more than 11,000 isolates covering 159 genera and 243 species. Our results indicate that methods that sam-
ple only chromosomal, core genes have difficulties in distinguishing closely related species which only recently diverged. The
KmerFinder method had the overall highest accuracy and correctly identified from 93% to 97% of the isolates in the evaluations
sets.

Rapid identification of the species of isolated bacteria is essen-
tial for surveillance for human and animal health and for

choosing optimal treatment and control measures. Since the be-
ginning of microbiology more than a century ago, this has to a
large extent been based on morphology and biochemical testing.
However, for more than 30 years, 16S rRNA sequence data have
served as the backbone for the classification of prokaryotes (1),
and tremendous amounts of 16S rRNA sequences are available in
public repositories (2–4). However, due to the conserved nature
of the 16S rRNA gene, the resolution is often too low to adequately
resolve different species and sometimes is not even adequate for
genus delineation (5, 6). Furthermore, many prokaryotic ge-
nomes contain several copies of the 16S rRNA gene with substan-
tial intergene variation (7, 8). It is also considered problematic
that this gene represents only a tiny fraction, roughly about 0.1%
or less, of the coding part of a microbial genome (9).

Second- and third-generation sequencing techniques have the
potential to revolutionize the classification and characterization
of prokaryotes and is now being used routinely in some clinical
microbiology labs. However, so far no consensus on how to utilize
the vast amount of information in whole-genome sequence
(WGS) data has emerged (10). Nevertheless, a number of different
methods have been proposed. Roughly, they can be divided into
those that require annotation of genes in the data and those that
employ the nucleotide sequences directly (9).

One of the first attempts to employ WGS data for taxonomic
purposes was carried out in 1999 (11). At the time, 13 completely
sequenced genomes of unicellular organisms were available, and
distance-based phylogeny was constructed on the basis of the
presence and absence of suspected orthologous (direct common
ancestry) gene pairs. Later, it was recognized that methods that
take into account gene content can be greatly influenced by hori-
zontal gene transfer (HGT), and alternative methods were devel-

oped that used homologous groups (gene family content) (12) or
protein domains (13).

Functional protein domains also form the basis of a recent
approach developed by our group (14). Here, the protein domains
are combined into functional profiles of which some are species
specific and can thus be used for inferring taxonomy.

As an extension of 16S rRNA analysis, which focuses on a single
locus, super multilocus sequence typing (SuperMLST) has been
proposed (15). It relies on the selection of a set of genes that are
highly conserved and hence can be used with any organism. In a
publication from 2012, Jolley et al. suggested that 53 genes encod-
ing ribosomal proteins be used for bacterial classification in an
approach called ribosomal MLST (rMLST) (16). Not all 53 genes
were found in all bacterial genomes, but due to the relatively high
number of sampled loci, this is not considered problematic. The
rMLST method forms the basis of a proposed reclassification of
Neisseria species (17) and has also been used for analyzing human
Campylobacter isolates (18).

It is also possible to employ the sequence data directly without
preannotation of genes. For instance, this can be done using
BLAST (19). An alternative, faster approach would be to look at
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k-mers (substrings of k nucleotides in DNA sequence data) and
use the number of cooccurring k-mers in two bacterial genomes as
a measure of evolutionary relatedness. Using the k-mer-based ap-
proach, we have developed a method, KmerFinder, which exam-
ines all regions of the genomes, not only core genes (20). Further-
more, a gene segment will score highly despite the transposition of
a gene segment within the genome since only the flanking regions
will be mismatched.

In the current study, we have trained five different methods for
species identification on a common data set of complete prokary-
otic genomes: (i) the SpeciesFinder method, which serves as the
baseline as it is based solely upon the 16S rRNA gene; (ii
Reads2Type which is a variant that searched for species-specific
50-mers, predominantly within the 16S rRNA gene, with the help
of non-species-specific 50-mers to quickly narrow the search; (iii)
rMLST, which predicts species by examining 53 ribosomal genes;
(iv) TaxonomyFinder, which is based on species-specific func-
tional protein domain profiles; and finally (v) KmerFinder, which
predicts species by examining the number of overlapping 16-
mers.

The publicly available databases contain ample amounts of
WGS data from prokaryotes, enabling us to conduct a large-scale
benchmark study of the proposed methods. Hence, the process of
reaching a consensus on how the WGS data should optimally be
used for prokaryotic taxonomy is initiated.

MATERIALS AND METHODS
Data set. (i) Training data. In August 2011 a total of 1,647 complete
genomes originating from Bacteria (1,535) and Archaea (112) were down-
loaded from the National Center for Biotechnology Information (NCBI
[http://www.ncbi.nlm.nih.gov/genome]). For each genome, the anno-
tated taxonomy according to GenBank was compared to the taxonomy
according to Entrez, which was retrieved using the taxonomy module of
BioPerl. Discrepancies were checked and corrected manually. For each
genome, it was also examined if the annotated name was in accordance to
the List of Prokaryotic Names with Standing in Nomenclature (http:
//www.bacterio.cict.fr/allnames.html) (21). When possible, names that
were not in accordance were corrected to valid ones. In this way, 1,426
genomes were assigned to 847 approved genus and species names. The
remaining 221 genomes, which were either assigned only to a genus, e.g.,
Vibrio spp., or assigned to species with informal names, e.g., Synechococcus
islandicus, were kept in the training data under the assumption that they
would influence the different methods for species identification equally.
An overview of the training data is available in Table S1 in the supplemen-
tal material.

(ii) Evaluation data. Three data sets were generated for the purpose of
evaluating the methods. The first consisted of assembled complete or draft
genomes with assigned species which were downloaded from NCBI in
September 2012 and were not already part of the training data. Only
genomes assigned to species that were also present in the training data
were included. The set was called NCBIdrafts and consisted of genomes
from 695 isolates covering 81 genera and 149 species. The set includes
three members of the Archaea, two Methanobrevibacter smithii isolates
and one Sulfolobus solfataricus isolate. An overview of the data can be seen
in Table S2 in the supplemental material.

Furthermore, in January 2012, 11,768 sets of Illumina raw reads with
assigned species were downloaded from the NCBI Sequence Reads Ar-
chive (SRA [http://www.ncbi.nlm.nih.gov/sra]) (22). A total of 10,517 of
these had been sequenced by the Illumina Genome Analyzer II sequencer,
while the remaining 1,251 had been sequenced by the Illumina HiSeq
2000 sequencer. A total of 1,361 sets of reads originated from species that
were not part of the training data and were removed. The final SRAreads

data set consisted of 8,798 sets of paired-end reads and 1,609 sets of single
reads, giving a total of 10,407 sets.

For the short reads of the SRAreads set, the optimal k-mer length was
estimated and used for de novo assembly as described previously (23)
using Velvet, version 1.1.04 (24). The resulting set of draft genomes con-
stituted the SRAdrafts evaluation set. To measure the qualities of the draft
assemblies, the N50 values were calculated (25). The draft assemblies had
an average N50 of 77,018, with a range of 101 to 779,945 (see Fig. S1 in the
supplemental material), an average number of scaffolds of 697, and an
average size of 3,301 kb.

The SRAreads and SRAdrafts sets both cover 167 different species from
120 genera with more than 5,000 strains from the Streptococcus, Staphylo-
coccus, and Salmonella genera. There are no species from Archaea. An
overview of the SRAreads and SRAdrafts sets is available in Table S3 in the
supplemental material.

Methods for species identification. (i) SpeciesFinder. SpeciesFinder
predicts the prokaryotic species based on the 16S rRNA gene. The concept
of using the 16S rRNA gene for taxonomic purposes goes back to 1977 (1),
but the implementation used in this study was developed by our group. A
16S database was built from the genomes of the common training data
using RNAmmer (26). The species predictions were performed differently
depending on the input type. If the input was short reads, the prediction
was done in the following way. (a) The reads were mapped against the 16S
database using the Smith-Waterman Burrows-Wheeler aligner (BWA)
(27). (b) The mapped reads were assembled using Trinity (28) to obtain
the 16S rRNA sequences. (c) The BLAST algorithm (19) was used to search
the output from Trinity against the 16S database. (d) The best BLAST hit
(see below) was chosen, and the species associated with the best hit was
given as the final prediction.

When the input sequence was a draft or complete genome, the predic-
tion was performed as follows. (a) The 16S rRNA gene was predicted from
the input sequence using RNAmmer. (b) Using the BLAST algorithm, the
predicted sequence was aligned against the 16S database. (c) The best
BLAST hit (see below) was chosen, and the species associated with it given
as the final prediction.

The best BLAST hit was chosen by ranking the output from the BLAST
alignment by the best cumulative rank of coverage, percent identity, bit
score, number of mismatches, and number of gaps. The highest ranked hit
was chosen for the prediction.

SpeciesFinder is freely available at http://cge.cbs.dtu.dk/services
/SpeciesFinder/.

(ii) rMLST. The rMLST method predicts bacterial species based on 53
ribosomal genes originally defined by Jolley et al. (16). The set of genes can
be used in an approach similar to multilocus sequence typing (MLST),
where each locus in the query genome is considered identical or noniden-
tical to alleles of the corresponding locus in the reference database, and an
allelic profile based on arbitrary numbers assigned to each of the alleles in
the database is generated accordingly. Since the strains that we compare
are more diverse than the ones compared in MLST, it is likely that many
loci would have no identical matches in the database, making a simple
cluster analysis based on allelic profiles problematic. To improve the res-
olution of the method, in our implementation of rMLST, the nucleotide
sequence of each locus is aligned to the alleles in the reference database,
and a measure of the similarity of the locus and the best matching allele is
used subsequently, as described below.

Briefly, for each of the genomes in the training data, the 53 ribosomal
genes were extracted by BLAST and provided to us by Keith Jolley, De-
partment of Zoology, University of Oxford, United Kingdom. In this way,
for each genome, a gene collection of up to 53 ribosomal genes was as-
signed. To predict the species of a query genome, the query genome was
first aligned to each gene collection using Blat (29). Only hits with at least
95% identity and 95% coverage were considered potential matches. If
there were several potential matches, the best match was selected based on
the best cumulative rank of coverage, percent identity, bit score, number
of mismatches, and number of gaps in the alignments. The final predic-
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tion was given as the organism with the highest number of best hits across
all genes. Our implementation of rMLST performs predictions for draft or
complete genomes but not short reads.

(iii) TaxonomyFinder. The TaxonomyFinder method is based on tax-
onomy group-specific protein profiles developed by our group (14; Luk-
jancenko et al., submitted). It performs predictions for draft or complete
genomes but not for short reads. The common training data were used to
create the taxonomy-specific profile database. Briefly, for each genome,
functional profiles were assigned based on three collections of hidden
Markov model (HMM) databases: PfamA (30), TIGRFAM (31), and Su-
perfamily (32). Genes that did not match any entry in the HMM databases
were clustered using CD-HIT (33). Further, genomes were grouped ac-
cording to the taxonomy level, either phylum or species, and profiles that
were specific to each taxonomic group were extracted. Profiles were con-
sidered specific to a taxonomic group if they were conserved in 30 to 100%
of the genomes within a phylum/species group and absent in all genomes
outside the group. The actual threshold for conservation depended on the
size of the group, with large groups having smaller thresholds for conser-
vation. The workflow of the TaxonomyFinder method is a four-step pro-
cess, as follows. (a) The open reading frame is predicted using Prodigal
(34). (b) Functional profiles are constructed from protein coding se-
quences. (c) Functional profiles are assigned. (d) Functional profiles are
compared to the taxonomy-specific profile database. The number of ar-
chitectures, matched to each of the taxonomy groups, is recorded, and the
fraction of taxon-specific genes (score) is calculated. The best-matching
taxonomy group is selected based on a consensus of the best score and
highest number of matched architectures.

TaxonomyFinder is freely available at http://cge.cbs.dtu.dk/services
/TaxonomyFinder/.

(iv) KmerFinder. The KmerFinder method was developed by our
group and predicts prokaryotic species based on the number of overlap-
ping (cooccurring) k-mers, i.e., 16-mers, between the query genome and
genomes in a reference database (20). Initially, all genomes in the com-
mon training data were split into overlapping 16-mers with step size of
one, meaning that if the first 16-mer is initiated at position N and ends at
position N � 15, the next 16-mer is initiated at position N � 1 and ends at
position N � 16, and so on. To reduce the size of the final 16-mer data-
base, only 16-mers with the prefix ATGAC were kept. These 16-mers were
stored in a hash table with links to the original genomes. The length of the
k-mers was chosen to be 16 since a parallel study showed that this resulted
in the highest performance of the method (results not shown). The prefix
ATGAC was initially selected in an attempt to focus the 16-mers on coding
regions (ATG is the start codon for protein coding sequences), while the A
and C were chosen arbitrarily as the first two nucleotides when the four
nucleotides are sorted alphabetically. Later studies have shown that the
nucleotide sequence of the prefix has little influence on the performance
of the method as long as strongly repetitive sequences, e.g., CCCCC or
AAAAA, are omitted (data not shown). When the prediction is per-
formed, the species of the query genome is predicted to be identical to the
species of the genome in the training data with which it has the highest
number of 16-mers in common, regardless of position. In the case of ties,
the species were sorted alphabetically according to their name and the first
species selected. The input for KmerFinder can be draft or complete ge-
nomes as well as short reads. KmerFinder is freely available at http://cge
.cbs.dtu.dk/services/KmerFinder/.

(v) Reads2Type. Reads2Type was developed by our group and iden-
tifies the prokaryotic species based on a database of 50-mer probes gener-
ated from chosen marker genes (D. Saputra, S. Rasmussen, M. V. Larsen,
N. Haddad, F. M. Aarestrup, O. Lund O, and T. Sicheritz-Pontén, unpub-
lished data). The version of Reads2Type evaluated in this study requires
short reads as input. For bacterial species not belonging to the Enterobac-
teriaceae family, the 50-mer database relies on the 16S rRNA locus, while
for Enterobacteriaceae the gyrB locus is used. Briefly, the following steps
were applied for building the 50-mer probe database. (a) The 16S rRNA
sequences of the complete bacterial genomes of the common training set

were predicted using RNammer (26). (b) For species belonging to the
Enterobacteriaceae family, the gyrB sequences were downloaded from
NCBI. (c) The above sequences were pooled, and all possible 50-bp frag-
ments were generated from that pool. (d) 16S rRNA probes unique for
Enterobacteriaceae were removed from the pool of 50-mers. (e) All 50-mer
duplicates associated to the conserved regions of different strains but the
same species were removed. (f) To further reduce the size of the final
50-mers database, 25 consecutive 50-mers previously fragmented from
one �50-bp stretch of 16S rRNA belonging to the same list of organisms
were removed.

The resulting 50-mer probe database consists of a number of se-
quences found uniquely in one species, as well as other sequences shared
between several species. Subsequently, each read was compressed into a
suffix tree, which is a data structure for fast string matching. The com-
pressed short reads were aligned to the 50-mer probe database using a
hierarchical “narrow-down” strategy: when a compressed read matched a
probe belonging to a group of species, a much smaller probe database
excluding other species was created on the fly, causing the read progress to
be faster and the species to be identified more quickly.

The Reads2Type method is freely available as a web server (http:
//cge.cbs.dtu.dk/services/Reads2Type/) and as a console. The web-
based Reads2Type is unique in not requiring the short read file to be
uploaded to the server. Instead, the 4.6-MB 50-mer probe database is
automatically transferred into the client computer’s memory before spe-
cies identification is initiated. All computations needed for the species
identification is fully performed on the client’s computer, minimizing the
data transfer and avoiding the network bottleneck on the server.

Testing the speed. The speed of the methods was evaluated on non-
published internal data from up to 450 strains covering eight species (En-
terococcus faecalis, Enterococcus faecium, Escherichia coli, Escherichia fergu-
sonii, Klebsiella pneumoniae, Salmonella enterica, Staphylococcus aureus,
and Vibrio cholerae) that had been sequenced by the Illumina sequencing
method. Draft genomes were de novo assembled as described above for the
SRAdrafts set. The speed was tested on a cluster with �86_64 architecture,
128 nodes, 4 cores per node, and 30 GB or 7 GB RAM per node. Species-
Finder used 4 cores per job, TaxonomyFinder used up to 10 cores per job,
and the other methods used 1 core per job.

RESULTS

Five methods for species identification were trained on a common
data set of completed prokaryotic genomes. The performances of
the methods were subsequently evaluated on three data sets of
draft genomes or short sequence reads.

Performances on NCBI draft genomes. The SpeciesFinder,
rMLST, TaxonomyFinder, and KmerFinder methods are able to
perform species predictions on draft or completed prokaryotic
genomes. Their performances were evaluated on the NCBIdrafts set
of 695 draft genomes covering 149 species. File S1 in the supple-
mental material lists all predictions, while Fig. 1A summarizes the
results. Overall, SpeciesFinder, which is based on the 16S rRNA
gene, had the poorest performance, correctly identifying only 76%
of the isolates down to species level. KmerFinder, which is
based on cooccurring 16-mers, had the highest performance
and correctly identified 93% of the isolates. For only three iso-
lates (0.43%), KmerFinder did not get even the genus correct.
These three isolates were two E. coli isolates predicted as Shigella
sonnei and one Providencia alcalifaciens isolate predicted as Yer-
sinia pestis.

The NCBIdrafts set contained three archaeal isolates: two M.
smithii isolates and one S. solfataricus isolate. SpeciesFinder,
TaxonomyFinder, and KmerFinder predicted the species of all
three isolates correctly, while rMLST, which was intended only for
characterization of bacteria (16), predicted the M. smithii isolate
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correctly but was unable to make a prediction for the S. solfatari-
cus.

The overlap in predictions of SpeciesFinder, rMLST, Tax-
onomyFinder, and KmerFinder was examined and is illustrated in
Fig. 2A. All four methods correctly identified 428 out of 695 iso-
lates (62%), and all methods misidentified the same six isolates.
These six isolates were also misidentified by the BLAST-based
method. Table 1 lists these six isolates. Since all five methods
agreed on these predictions, the isolates are possibly wrongly an-
notated. Alternatively, the annotations of the isolates in the train-
ing data that the predictions were based on are incorrect.

As seen in Fig. 2A, isolate predictions agreed upon by several
methods are more accurate that predictions unique to a particular
method. However, the KmerFinder method made unique predic-
tions for 36 isolates, of which 20 were in concordance with the
annotation.

Predictions for the most common species in the NCBIdrafts data
set were examined more closely and are illustrated in Fig. 3 and in
File S2 in the supplemental material. In general, the “wrong” pre-
dictions by SpeciesFinder (that is, the ones that were in disagree-
ment with the NCBI annotation) were typically scattered, often
consisting of a few wrong predictions of each type. The rMLST
method was, on the other hand, more consistent in its incorrect
predictions. As an example, the rMLST method wrongly anno-
tated all 14 Bacillus anthracis isolates as Bacillus thuringiensis, all 8
Brucella abortus isolates as Brucella suis, and all 6 Burkholderia
mallei isolates as Burkholderia pseudomallei. In general, all four

methods had difficulties identifying species within the Bacillus ge-
nus, such as isolates annotated as B. thuringiensis but predicted to
be Bacillus cereus or vice versa. Another mistake common to all
methods was Streptococcus mitis being predicted as Streptococcus
oralis or Streptococcus pneumoniae. Also, none of the methods was
able to correctly identify all annotated E. coli isolates but identified
at least some of them as Shigella spp. Both SpeciesFinder and
TaxonomyFinder had problems identifying the Borrelia burgdor-
feri isolates, while SpeciesFinder and rMLST had problems distin-
guishing Yersinia pestis from Yersinia pseudotuberculosis. Species-
Finder was the only method that had difficulties identifying
Mycobacterium tuberculosis isolates, often predicting them to be
Mycobacterium bovis isolates.

Performance rates on SRA draft genomes. The SpeciesFinder,
rMLST, TaxonomyFinder, and KmerFinder methods were next
evaluated on the SRAdrafts set of 10,407 draft genomes covering
167 species. The performances on the draft genomes, for which
the methods were able to make a prediction, are depicted in Fig.
1B, while the overlap in predictions is illustrated in Fig. 2B. Again,
SpeciesFinder had the lowest performance, with only 84% correct
predictions. The rMLST, TaxonomyFinder, and KmerFinder
methods had almost equal performance rates of 94%, 95%, and
95%, respectively. There was, however, a difference in the percent-
age of draft genomes for which each of the methods failed to make
any prediction. SpeciesFinder and KmerFinder were the most ro-
bust methods, failing to make predictions for only 0.2% and 0.4%
of the draft genomes, respectively. TaxonomyFinder was not able

FIG 1 Performance of the five methods for species identification on the indicated data sets. The rMLST and TaxonomyFinder methods take only draft or
complete genomes as input, while Reads2Type works only for short reads. Correct (genus and species), predicted genus and species are in accordance with the
annotation; only genus correct, the predicted genus is in accordance with the annotation, but the species is not; not even genus correct, neither predicted genus
nor species is in accordance with the annotation.
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to make a prediction for 1.8% of the draft genomes, and rMLST
was not able to for 3.5%. That rMLST was the least robust method
is at least partly due to our implementation of the method, where
only hits with at least 95% identity and 95% coverage were con-
sidered potential matches. On the other hand, the N50 values for
the draft genomes that SpeciesFinder and KmerFinder could not
make a prediction for were approximately half the size of the cor-
responding values for rMLST and TaxonomyFinder (data not
shown), meaning that the quality of the draft genomes has to be
higher for rMLST and TaxonomyFinder to be able to make a pre-

diction. This is in accordance with these methods relying on the
presence of many complete genes.

Predictions for the most common species in the SRAdrafts data
set are shown in Fig. 4 and in File S2 in the supplemental material.
As seen previously when the NCBIdrafts set was used for evalua-
tions, the rMLST method was more consistent in its predictions
for a given species than the other methods. For instance, rMLST
predicted all 15 Mycobacterium bovis isolates to be M. tuberculosis.
As also seen when the NCBIdrafts set was used for evaluations, it is
evident that all methods had difficulties distinguishing E. coli from

FIG 2 Overlap in predictions by the five methods for species identification. Numbers written in regular font indicate the number of isolates for which the
predicted species corresponds to the annotated species. Numbers written in italics indicate the number of isolates for which the predicted and annotated species
differ. The methods used and data sets evaluated are indicated.

TABLE 1 Isolates of the NCBIdrafts set for which all five methods predict the species to be different from its present annotation

RefSeq accession no.a Strain namec Annotated species Predicted species

NZ_ACLX00000000 AH621 (uid55161) Bacillus cereus Bacillus weihenstephanensis
NZ_ACMD00000000 BDRD ST196 (uid55169) Bacillus cereus Bacillus weihenstephanensis
NZ_ABDQ00000000 C Eklund (uid54841) Clostridium botulinum Clostridium novyi
NZ_ABXZ00000000 FTG (uid55313) Francisella novicida Francisella tularensis
NZ_AHIE00000000 DC283 (uid86627) Pantoea stewartii Pantoea ananatis
NZ_AEPO00000000b ATCC 49296 (uid61461) Streptococcus sanguinis Streptococcus oralis
a NCBI Reference Sequence (RefSeq) accession number from GenBank.
b NZ_AEPO00000000 has been reannotated as Streptococcus oralis since we collected the data in 2011.
c uid, unique identification number.
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species within the Shigella genus. Furthermore, species within the
Brucella genus were often wrongly identified. In particular, it was
only TaxonomyFinder that was able to correctly identify most
Brucella abortus isolates. Some of the common problems that were
obvious when the NCBIdrafts set was used for evaluations were not
obvious when the SRAdrafts set was used for evaluations since the
problematic species were too scarcely represented here. For in-
stance, there were only five species from the Bacillus genus and
only one S. mitis isolate in the SRAdrafts data set. The difference in

species distribution between the NCBIdrafts and SRAdrafts sets also
explain why SpeciesFinder, TaxonomyFinder, and rMLST all have
increased performance on the SRAdrafts set: while more than half
of the isolates in the SRAdrafts set belong to the Salmonella, Staph-
ylococcus, and Streptococcus genera, which none of the methods
have particular problems identifying, these genera constitute less
than 20% of the NCBIdrafts set. Conversely, the NCBIdrafts set con-
tains a high proportion of the problematic species E. coli (8.8%)
and the genus Bacillus (10%). The corresponding proportions for

FIG 3 Predictions for the most common species of the NCBIdrafts set. For each method, indicated at the top of each panel, the results for a given species are only
shown if the method made a prediction for five or more isolates annotated as this species (e.g., if there are five isolates annotated as species A in the data set, but
the method was not able to make a prediction for one of the isolates, the species is not shown) or if two or more isolates are predicted as this species (e.g., if there
are no isolates annotated as species B in the data set but two isolates annotated as species C are predicted to be species B, then species B is shown).
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SRAdrafts are 3.5% E. coli isolates and 0.05% isolates of the Bacillus
genus. Furthermore, the NCBIdrafts set is proportionally more di-
verse, consisting of 149 species, while the almost 15-times-larger
SRAdrafts set consists of only 168 different species.

Performances on short reads from SRA. Only three of the
methods were able to perform species predictions directly on
short reads without first assembling the reads. These methods
were SpeciesFinder, KmerFinder, and Reads2Type. Their perfor-
mances on the SRAreads set of 10,407 sets of short reads represent-
ing 168 species are shown in Fig. 1C.

Again, the SpeciesFinder method had the poorest perfor-
mance, with 86% of the isolates being correctly predicted.
Reads2Type performed marginally better (87%), while Kmer-
Finder achieved 97% correct reads.

Figure 2C illustrates the overlap in predictions between the
three methods, while predictions for the most common species are
shown in Fig. S2 in the supplemental material. In general, the
results correspond to those observed for the SRAdrafts set.

Speed. The speed of the methods was evaluated on a subset of
draft genomes and short reads as described in Materials and Meth-

FIG 4 Predictions for the most common species in the SRAdrafts data set. For each method, indicated at the top of each panel, the results for a given species is
shown only if the method made a prediction for 10 or more isolates annotated as this species or if two or more isolates are predicted as this species.
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ods (Table 2). Since the actual speed experienced by the user will
depend on a number of factors, for instance, the network band-
width capacity of the client computer and the number of jobs
queued at the server, the relative speed of the different methods in
comparison to each other is more relevant than the absolute
speed.

DISCUSSION

In the present study, we trained five different methods for pro-
karyotic species identification on a common data set and evalu-
ated their performance on three data sets of draft genomes or
short sequence reads.

The SpeciesFinder method is based on the 16S rRNA gene,
which has served as the backbone of prokaryotic systematics since
1977 (1). Accordingly, sequencing of the 16S rRNA gene is a well-
established method for identification of prokaryotes and has, in all
likelihood, been used for annotating some of the isolates in the
training and evaluation sets. In the light of this potential advan-
tage of the SpeciesFinder method over the other methods, it is
noteworthy that it had the lowest performance on all evaluation
sets. Previous studies, however, have also pointed to the many
limitations of the 16S rRNA gene for taxonomic purposes (5–9).
Examples, which are also observed in this study, include its inad-
equacy for the delineation of species within the Borrelia burgdor-
feri sensu lato complex and the Mycobacterium tuberculosis com-
plex (35). Similarly, in silico studies of the applicability of the 16S
rRNA gene for the identification of medically important bacteria
led to the authors concluding that although the method is useful
for identification to the genus level, it is able to identify only 62%
of anaerobic bacteria (36) and less than 30% of aerobic bacteria
(37) confidently to the species level.

The performance of SpeciesFinder was surpassed only margin-
ally by Reads2Type. This is not surprising since the two methods
are conceptually very similar: SpeciesFinder utilizes the entire 16S
rRNA gene of approximately 1,540 nucleotides, while for most
species, Reads2Type searches for species-specific 50-mers in the
same gene. In terms of its future usability, Reads2Type has, how-
ever, one advantage over the other methods: like most of the other
methods it is available as a web server, but uniquely it does not
require the read data to be uploaded to the server. Instead, a small
50-mer database is transferred to the user’s computer, and all
computations are performed there. As a result, bottleneck prob-
lems on the server are avoided, and the data transfer is minimized,
which may be particularly advantageous for users with limited
Internet access.

While SpeciesFinder and Reads2Type sample only one locus,
the rMLST method samples up to 53 loci—all ribosomal genes
located to the chromosome of the bacteria. Evaluating on the data

set of SRA draft genomes, rMLST, TaxonomyFinder, and Kmer-
Finder performed equally well. However, on the more diverse
and difficult set of NCBI draft genomes, the rMLST method
performed only marginally better than SpeciesFinder and signifi-
cantly worse than TaxonomyFinder and KmerFinder. In particu-
lar, the rMLST method consistently made incorrect identifica-
tions of a number of closely related species, e.g., Y. pestis versus Y.
pseudotuberculosis (38) and M. tuberculosis versus M. bovis (39).
Also, rMLST consistently predicted the human pathogen B. an-
thracis to be B. thuringiensis. The latter is used extensively as a
biological pesticide and is generally not considered harmful for
humans. B. anthracis and B. thuringiensis are both members of the
B. cereus group and genetically very similar, with most of the dis-
ease and host specificity being attributable to their plasmid con-
tent (40, 41). It has even been suggested that all members of the B.
cereus group should be considered to be B. cereus and only subse-
quently be differentiated by their plasmids (42). Hence, in concor-
dance with rMLST sampling only chromosomal, core genes, it is
not surprising that the method fails to distinguish these isolates. A
similar example is given by the rMLST method identifying all E.
coli isolates as Shigella sonnei. Although Shigella sp. isolates have
been rewarded their own genus, the separation of the genus from
Escherichia spp. is mainly historical (43–45). To be sure, some of
the mistakes commonly made by rMLST as well as the other meth-
ods highlight taxonomic taxa that are intrinsically difficult to dis-
tinguish due to a suboptimal initial classification. Although Shi-
gella has for several years been considered a substrain of E. coli, the
practical implications of renaming it are considered insurmount-
able. It should also be noted that the rMLST method was not
developed for usage with a fixed training set but, rather, with all
known alleles. Accordingly, the performance of the method is ex-
pected to improve with increased size of the reference rMLST
database, which is currently expanding rapidly (Keith Jolley, De-
partment of Zoology, University of Oxford, United Kingdom,
personal communication).

The TaxonomyFinder method was the second most accurate
method on the set of NCBI draft genomes and performed in the
top for the SRA drafts set. In contrast to the other methods, it does
not work directly on the nucleotide sequence of the isolates but,
rather, on the proteome, utilizing functional protein domain pro-
files for the species prediction. It was the slowest of the tested
methods, but in return for the extra time, the user is rewarded with
an annotated genome.

The KmerFinder method performs its predictions on the basis
of cooccurring k-mers, regardless of their location in the chromo-
some. It had the overall highest accuracy, worked on complete or
draft genomes as well as short reads, and was found to be very
robust as well as fast. Furthermore, the KmerFinder method holds
promise for future improvements as the implementation used for
this study was very simple. Only the raw number of cooccurring
k-mers between the query and reference genome was considered
although a parallel analysis indicated that the performance could
be improved even further if more sophisticated measures were
used, also taking into account the total number of k-mers in the
query and reference genome. KmerFinder took approximately 9 s
per query genome, which makes it the fastest of the tested meth-
ods. To test the general applicability of sampling the entire ge-
nome and not preselected genes or sets of genes for the species
prediction, we also implemented a whole-genome BLAST-based
method. The method used hit aggregation of significant matches

TABLE 2 Speed of the tested methods

Method

Speed (mm:ss) on:a

Draft genomes Short reads

SpeciesFinder 00:13 3:14
Reads2Type NA 1:20
rMLST 00:45 NA
TaxonomyFinder 11:33 NA
KmerFinder 00:09 03:10
a NA, not applicable.
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between the query genome and all genomes in the common train-
ing set. As the final prediction, the species for which the query
genome had the most bases matched was selected. The perfor-
mance of this whole-genome BLAST-based method was tested on
the NCBIdrafts and SRAdrafts evaluation sets and found to be very
similar to that of KmerFinder (see File S2 in the supplemental
material). The method was, however, almost 20 times slower than
KmerFinder, taking approximately 3 min per genome.

It has previously been noted that some of the isolates present in
public databases and, hence, used in this study, are wrongly anno-
tated (17, 46, 47). Based on the current study, it is likely that at
least the six isolates from the NCBIdrafts set that all methods iden-
tified as something other than the annotated species are wrongly
annotated or, alternatively, most closely related to an isolate in the
common training data that is wrongly annotated. In agreement
with this, one of the isolates has indeed been reannotated since we
initially downloaded the data. Of the remaining five isolates, two
B. cereus isolates were found to be most closely related to the
Bacillus weihenstephanensis strain KBAB4 of the common training
set. This strain is the single representative of the species in the
public database and not the type strain. Hence, there is no guar-
antee that the sequenced strain represents the named taxon (48).
The same is the case for the Clostridium botulinum strain C Ek-
lund, which is predicted to be a Clostridium novyi based on its
close resemblance to C. novyi strain NT of the training set. Clos-
tridium novyi strain NT is the only representative of this species in
the database and not the type strain. Obviously, all the evaluated
methods are highly dependent on the size and the accuracy of the
set of genomes that they are trained on. Accordingly, all methods
have the potential to improve their performance in the future
when more genomes become available and when the present mis-
takes in the public databases are corrected. Another way to ensure
future improvement is to combine the individual predictions of
the methods and let the final predicted species of a query genome
be decided by a majority vote. We are currently planning to im-
plement such a system.

In the current study, we included only species in the evaluation
sets which were also present in the training set. We have hence not
tested how the methods would perform when presented with a
species not included in the training set. SpeciesFinder searches for
the closest match in the query genome to a database of 16S rRNA
genes. If the species of the query genome is not represented in the
database, the closest match is likely to be of a closely related spe-
cies, but the method will also test if the percent identity and cov-
erage of the 16S rRNA gene are above 98% and mark the predic-
tion as “failed” if the match is below this threshold. The rMLST
method searches for closest matches in a database of 53 different
ribosomal genes. In our implementation, the method will not
provide an output if the percent identity and coverage of the
matches are below a threshold of 95%, and hence it will be able to
select only a closely related species for species that are not repre-
sented in the training set. Other implementations of the rMLST
method, however, would not necessarily have this limitation. The
TaxonomyFinder method uses species- or phylum-specific
protein profiles and would hence identify the correct phylum if
the species of the query genome was not in the training set.
Along with the predicted species, the KmerFinder outputs the
number of cooccurring k-mers that the selection was based on.
A high number of k-mers indicates that the identification is
probable, while low numbers of k-mers indicate that the pre-

dicted species is likely to be a related species and that the actual
species is not in the training data. Further investigations would
be necessary to identify a threshold for the number of k-mers to
make this distinction.

While some taxonomists consider the goal of bacterial tax-
onomy to “mirror the order of nature and describe the evolu-
tionary order back to the origin of life” (6, 49), a more prag-
matic and applied view is likely to be advantageous for
epidemiological purposes, where most outbreaks last less than
6 months. The number of prokaryotic genomes in public data-
bases is currently sufficiently high to replace theoretical views
of which loci to sample for optimal species identification by
actual testing of how different approaches perform. One locus
(the 16S rRNA gene) was initially used for sequenced-based
examination of relationships between bacteria, and when the
approach was found to have limitations, more loci were added
in MLST and multilocus sequence analysis (MLSA) (50, 51).
The addition of still more loci has been suggested for improv-
ing MLSA even further (16, 35). This study suggests that an
optimal approach should not be limited to a finite number of
genes but, rather, look at the entire genome.

Conclusion. The 16S rRNA gene has served prokaryotic tax-
onomy well for more than 30 years, but the emergence of second-
and third-generation sequencing technologies enables the use of
WGS data with the potential of higher resolution and more phy-
logenetically accurate classifications. Methods that sample the en-
tire genome, not just core genes located to the chromosome, seem
particularly well suited for taking up the baton.
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